SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: H\&WRE (19CE0123)
Year \& Sem : III B.Tech \& II-Sem
Course \& Branch: B. Tech \& CE
Regulation: R19

UNIT -I

INTRODUCTION TO HYDROLOGY \& HYDROGRAPH ANALYSIS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1. \& \multicolumn{10}{|l|}{Explain with the help of a diagram the hydrological cycle with components?} \& [L2][CO1] \& [12M] \\
\hline 2. \& \multicolumn{10}{|l|}{\begin{tabular}{l}
(a)Demonstrate your understanding about precipitation? \\
(b) Explain types and forms of precipitation?
\end{tabular}} \& \[
\begin{aligned}
\& \text { [L2][CO1] } \\
\& \text { [L1][CO1] }
\end{aligned}
\] \& \[
\begin{aligned}
\& {[4 \mathrm{M}]} \\
\& {[8 \mathrm{M}]} \\
\& \hline
\end{aligned}
\] \\
\hline 3. \& \multicolumn{10}{|l|}{Explain the factors which affect the rate of evaporation?} \& [L2][CO1] \& [12M] \\
\hline 4. \& \multicolumn{10}{|l|}{What is mean by Infiltration? Explain the factors which affect the rate of infiltration?} \& [L1][CO1] \& [12M] \\
\hline 5. \& \multicolumn{10}{|l|}{Explain the water budget method and the energy balance method?} \& [L2][CO1] \& [12M] \\
\hline 6. \& \multicolumn{10}{|l|}{\begin{tabular}{l}
(a) With the help of a neat sketch explain the single tube infiltrometer? \\
(b) Explain elaborately about \(\Phi\)-index and W -index?
\end{tabular}} \& \[
\begin{aligned}
\& \hline \text { [L2][CO1] } \\
\& \text { [L2][CO1] } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& {[6 M]} \\
\& {[6 M]} \\
\& \hline
\end{aligned}
\] \\
\hline 7. \& \multicolumn{10}{|l|}{\begin{tabular}{l}
(a) Compute the weekly evaporation from a reservoir using the water-budget method from the following data recorded during the week. Average inflow into the reservoir is \(32.5 \mathrm{~m}^{3} / \mathrm{s}\), average out flow from the reservoir is \(40.2 \mathrm{~m} 3 / \mathrm{s}\), average water spread area is \(15.8 \mathrm{~km}^{2}\), storage at the beginning of the week is \(9180 \mathrm{ha}-\mathrm{m}\) and storage at the end of the week is \(8360 \mathrm{ha}-\mathrm{m}\). \\
(b) What do you mean by Hydrograph and Unit hydrograph?
\end{tabular}} \& [L3][CO1]
[L1][CO1] \& \([6 M]\)

$[6 M]$

\hline 8. \& \multicolumn{10}{|l|}{Explain the construction and limitations of unit hydrograph.} \& [L3][CO1] \& [12M]

\hline \multirow[t]{3}{*}{9.} \& \multicolumn{10}{|l|}{The ordinates of a 6-h unit hydrograph are given a storm had 3 successive 6-h intervals of rainfall magnitude of 3,5 and 4 cm respectively. Assuming a Φ index of $0.23 \mathrm{~cm} / \mathrm{hr}$ and a base flow of $30 \mathrm{~m}^{3} / \mathrm{s}$. Determine the resulting hydrograph} \& \multirow{3}{*}{[L4][CO1]} \&

\hline \& Time In hour \& 0 \& 6 \& 12 \& 18 \& 24 \& 30 \& 36 \& 42 \& 48 \& \& [12M]

\hline \& Ordinate of 6-hr U. $\mathrm{H}\left(\mathrm{m}^{3} / \mathrm{s}\right)$ \& 0 \& 250 \& 600 \& 800 \& 700 \& 600 \& 450 \& 320 \& 200 \& \&

\hline 10. \& \multicolumn{10}{|l|}{Write the method to measure the evaporation? Explain any one method.} \& [L2][CO1] \& [12M]

\hline
\end{tabular}

UNIT -II

GROUND WATER\& IRRIGATION

1	Explain in detail about the different types of aquifers with neat sketch.	[L1][CO1]	[12M]
2	(a) Explain ground water well and basic assumptions? (b) In certain alluvial basin of $120 \mathrm{~km}^{2}, 100 \mathrm{Mm}^{3}$ of ground water was pumped in a year and the ground water table dropped by 5 m during the year. Assuming no replenishment, estimate the specific yield of the aquifer. If the specific retention is 12%, what is the porosity of the soil?	$\begin{aligned} & {[\mathrm{L} 2][\mathrm{CO} 1]} \\ & {[\mathrm{L} 3][\mathrm{CO} 1]} \end{aligned}$	$\begin{aligned} & {[6 M]} \\ & {[6 M]} \end{aligned}$
3	(a) What do you understand from Darcy's law, hydraulic gradient, seepage velocity. (b) Enumerate about specific yield and elaborate the factors contribute the specific yield.	$\begin{aligned} & \hline[\mathrm{L} 2][\mathrm{CO} 1] \\ & {[\mathrm{L} 2][\mathrm{CO} 1]} \end{aligned}$	$\begin{aligned} & \hline[6 M] \\ & {[6 M]} \end{aligned}$
4	(a) With a neat sketch explain Dupuit's theory for confined aquifer? (b) An undisturbed rock sample has an over dry weight of 1305 gm . When it is completely saturated with kerosene it weighed 1436 gm . The saturated sample, when immersed in kerosene displaced 605 gm of kerosene. What is the porosity of the sample?	$\begin{aligned} & \hline[\mathrm{L} 1][\mathrm{CO} 1] \\ & {[\mathrm{L} 2][\mathrm{CO} 1]} \end{aligned}$	$\begin{aligned} & \hline[8 \mathrm{M}] \\ & {[4 \mathrm{M}]} \end{aligned}$
5	Explain the necessity and importance of Irrigation?	[L2][CO2]	[12M]
6	List out the advantages of Irrigation in detail.	[L1][CO2]	[12M]
7	(a) Briefly discuss in detail with flow chart about the types of irrigation. (b) Define duty and delta of irrigation?	$\begin{aligned} & {[\mathrm{L} 1][\mathrm{CO} 2]} \\ & {[\mathrm{L} 2][\mathrm{CO} 2]} \\ & \hline \end{aligned}$	$\begin{aligned} & {[8 \mathrm{M}]} \\ & {[4 \mathrm{M}]} \end{aligned}$
8	Explain in detail about the methods of application of irrigation water.	[L1][CO2]	[12M]
9	(a) Enumerate in detail about factor affecting duty of irrigation water. (b) Explain in detail about the methods of improving duty	$\begin{aligned} & \hline \text { [L1][CO2] } \\ & \text { [L2][CO2] } \\ & \hline \end{aligned}$	$\begin{aligned} & {[6 \mathrm{GM}]} \\ & {[6 \mathrm{M}]} \end{aligned}$
10	The left branch canal carrying a discharge of 20 cumecs has a Culturable commended area of 20000 hectares? The intensity of rabi crop is 80% and base period is 120 days. The right branch canal carrying a discharge of 8 cumecs has a Culturable commanded area of 12000 hectares, intensity of irrigation of rabi crop is 50% and base period is 120 days. Compare the efficiencies of the two canal systems.	[L3][CO2]	[12M]

UNIT -III

WATER REQUIREMENT OF CROPS \& CANAL REGULATION WORKS

1	Explain any five irrigation efficiencies	[L1][CO3]	[12M]
2	A water course commands an irrigation area 1000 hectares. The intensity of irrigation of rice in this area is 70%. The transplantation of rice crop takes 15 days and during the transplantation period the total depth of water required by crop on field is 500 mm . during transplantation period, the useful rainwater falling on field is 120 mm . Find during transplantation, at head of field and also at head of water course. Also calculate the discharge required in water course.	[L3][CO3]	[12M]
3	(a) Illustrate about G.C.A. and C.C.A. (b) Briefly detailed about Culturable cultivated area and Culturable uncultivated area?	$\begin{aligned} & \hline[\mathrm{L} 2][\mathrm{CO} 3] \\ & {[\mathrm{L} 1][\mathrm{CO} 3]} \end{aligned}$	$\begin{aligned} & {[8 M]} \\ & {[4 M]} \end{aligned}$
4	A field of 4 hectares has an average root zone depth of 1.0 m , a field capacity of 18% (both by weight). Assume that it's desirable to irrigation when 60% of available moisture has been extracted. The field is irrigated by a sprinkler system which delivers $300 \mathrm{~m} 3 /$ hour over a period of 12 hours. What is water application efficiency? Density of soil is $1400 \mathrm{~kg} / \mathrm{m} 3$.	[L3][CO3]	[12M]
5	Explain with neat sketch about the types of fall in dam irrigation?	[L2][CO4]	[12M]
6	What is roughening device in canal? And also explain its varieties?	[L1][CO4]	[12M]
7	Write the design step by step procedure for sarada type falls with formulas?	[L3][CO4]	[12M]
8	Design a Sarada type fall for the following set of data. Full Supply Discharge$14 \mathrm{m3} / \mathrm{s}$, Bed width- 18 m , Full Supply Depth (FSD) - 1.5 m , Full Supply Level (U/S) -101.00 m, Full Supply Level (D/S) -100.00 m, U/S Bed Level $99.5 \mathrm{~m}, \mathrm{D} / \mathrm{S}$ Bed Level- 98.5 m , Natural Surface Level-99.5 m (D/S), Bligh's Coefficient (c) is -8.	[L4][CO4]	[12M]
9	(a) Write the function of cross regulators and distributor head regulators? (b) Write the criteria to design the crest level and length of downstream floor in cross regulator design.	$\begin{aligned} & \hline \text { [L1][CO4] } \\ & \text { [L3][CO4] } \end{aligned}$	$\begin{aligned} & {[6 M]} \\ & {[6 M]} \end{aligned}$
10	Demonstrate about consumptive use of water? Write in detail about factors affecting consumptive use of water.	[L2][CO3]	[12M]

UNIT -IV
CROSS DRAINAGE WORKS\& RESERVOIR PLANNING

| $\mathbf{1 .}$ | Elaborate about cross drainage work and detailed its types. | $[\mathrm{L2}][\mathrm{CO}]$ |
| :--- | :--- | :--- | :--- |\(\left[\begin{array}{ll}{[\mathbf{1 2 M}]}

\hline \mathbf{2 .} \& $$
\begin{array}{l}\text { (a) Illustrative the criteria's to select the suitable type of cross drainage work. } \\
\text { (b) Write the three classifications of aqueducts? }\end{array}
$$\end{array}\right.\)

UNIT - V

DAMS\& GRAVITY DAMS

1.	Classify all the various classifications of dams according to use in detail with sketches.	[L2][CO6]	[12M]
2.	(a) Discuss in brief about the merits and demerits of any two types of dam. (b) What do you understand by gravity dam?	$\begin{aligned} & \hline \text { [L2][CO6] } \\ & \text { [L2][CO6] } \end{aligned}$	$\begin{aligned} & {[8 \mathrm{BM}]} \\ & {[4 \mathrm{M}]} \end{aligned}$
3.	Discuss the physical factors that govern selection of type of dam.	[L2][CO6]	[12M]
4.	What are the factors to be considered for selection of site for a dam?	[L2][CO6]	[12M]
5.	(a) Explain with sketch about galleries in gravity dam? (b) Write briefly on various forces that act on a gravity dam.	$\begin{aligned} & \hline \text { [L1][CO6] } \\ & \text { [L2][CO6] } \end{aligned}$	$\begin{aligned} & {[4 \mathrm{M}]} \\ & {[\mathbf{8 M}]} \\ & \hline \end{aligned}$
6.	Discuss in detail various modes of failure of a gravity dam.	[L2][CO6]	[12M]
7.	Explain the stability analysis for dam carried out by analytical method.	[L3][CO6]	[12M]
8.	Draw and explain the elementary profile of a gravity dam.	[L2][CO6]	[12M]
9.	A masonry dam 6 m high and 1.5 m wide at the top and 4.5 m wide at the bottom, with vertical face. Determine the normal stresses at the toe and heel for reservoir empty and reservoir full conditions. Take $\rho=2.4$ and $\mathrm{c}=1$.	[L3][CO6]	[12M]
10.	Discuss about the limiting height of a gravity dam.	[L1][CO6]	[12M]

Prepared by
 Mr. G.HEMADRI Assistant Professor/CE

